A NOVEL ANTIBIOTIC, NAPHTHOPYRANOMYCIN

Sir:

In the course of our screening program for new antitumor substances, we isolated a novel antibiotic naphthopyranomycin (Fig. 1) from the mycelium extract of an actinomycete. Here, we report the fermentation, purification, structure elucidation and biological activities of naphthopyranomycin.

The producing organism identified as a *Strepto*myces sp. was isolated from soil sample collected at Quito in Ecuador. The fermentation was carried out in a 500-ml Erlenmeyer flask containing 100 ml of medium with following composition; potato starch 3.0%, soya flake 1.5%, yeast extract 0.2%, corn steep liquor 0.5%, NaCl 0.3%, MgSO₄ · 7H₂O 0.05%, CaCO₃ 0.3%, CoCl₂ · 6H₂O 0.0005%. The pH of the medium was adjusted to 7.2 before sterilization. The seed culture was inoculated to the flasks, and the fermentation was carried out at 27°C for 5 days on a rotary shaker.

Naphthopyranomycin (1) was isolated according to the scheme as shown in Fig. 2, and showed the

Fig. 1. The total structures of naphthopyranomycin (1), anhydro-5-deoxyfusarubin (2) and anhydro-5-deoxyfusarubin acetate (3).

Fig. 2. Isolation scheme of naphthopyranomycin.

Mycelium cake (10 liters)

added 70% acetone (2 liters) concentrated to small volume to remove acetone extracted with EtOAc (1 liter \times 2)

EtOAc layer (2 liters)

concentrated in vacuo

Silica gel column (150 ml)

eluted with CHCl₃-MeOH (50:1)

Active fractions

concentrated in vacuo

Preparative TLC (Kieselgel 60 F254 0.5 mm) developed with CHCl₃-MeOH (15:1)

Active band

extracted with $CHCl_3 - MeOH(1:1)$

Crude naphthopyranomycin

concentrated in vacuo

Sephadex LH-20 column (200 ml)

developed with $CHCl_3$ - MeOH (1:1)

Active fractions

concentrated in vacuo

Naphthopyranomycin (6.5 mg)

 $\begin{array}{cc} 2 & R = H \\ 3 & R = Ac \end{array}$

Table 1. Physico-chemical properties of naphthopyranomycin.

Appearance	Red powder		
MP (dec)	131~133°C		
Molecular formula	C ₂₅ H ₂₈ O ₉		
FD-MS m/z (M ⁺)	472		
Analysis	Calcd: Found:		
С	63.55 64.10		
Н	5.97 6.15		
UV λ_{max} nm (ε)			
0.01 N HCl-MeOH	240.8 (12,200), 302.4 (15,200),		
	470.8 (3,700)		
0.01 N NaOH - MeOH	264.4 (14,300), 296.4 (15,700),		
	534.4 (3,200)		
IR v (KBr) cm ⁻¹	3400, 1700, 1640, 1600, 1390,		
	1295		

Fig. 3. Partial structures of naphthopyranomycin.

Position —	1		3	2
	$\delta_{ m C}$	$\delta_{ m H}$	$(\delta_{\rm C})$	$(\delta_{ m H})$
1	73.1 d	5.65 (dd, 3.5, 9.5)	63.5 t	5.24 (s)
3	158.6 s		156.1 s	
4	99.9 d	5.60 (s)	100.6 d	5.62 (s)
4a	139.7 s		144.7 s	
5	114.9 d	7.16 (s)	111.4 d	7.43 (s)
5a	131.0 s		132.7 s	
6	184.4 s		179.8 s	
7	144.7 s ^b		160.0 s	
8	140.6 s ^b		118.3 d	6.04 (s)
9	186.4 s		183.3 s	
9a	112.5 s		120.1 s	
10	157.0 s	12.20 (OH)	138.7 s	12.25 (OH)
10a	122.6 s		125.8 s	
11	34.9 t	$1.5 \sim 1.6^{\circ}, 1.96^{\circ}$		
12	18.1 t	1.4~1.6°		
13	13.3 q	0.96 (t, 7.0)		
14 (3-methyl)	20.4 q	1.96 (s)	19.8 q	1.96 (s)
15	41.9 t	4.05 (d, 16.0), 4.11 (d, 16.0)		
16	205.1 s			
17	29.8 q	2.18 (s)		
18	94.9 d	6.08 (s)		
20	82.1 d	3.62 (ddd, 6.3, 9.0, 9.0)		
21	62.1 d	3.97 (ddd, 4.5, 9.0, 10.5)		
22	71.2 t	3.60 (dd, 10.0, 10.5),		
		4.25 (dd, 4.5, 10.0)		
24	62.2 t	3.83 (dd, 9.0, 10.6),		
		3.90 (dd, 6.3, 10.6)		
15-O-Methyl			56.3 q	3.94 (s)

Table 2. ¹³C NMR and ¹H NMR spectral data of naphthopyranomycin (1), anhydro-5deoxyfusarubin (2) and anhydro-5-deoxyfusarubin acetate (3)^a.

^a Taken in CDCl₃.

^b The assignments may be interchanged.

^c Resonance in one-dimentional spectra obscured by overlapping signals.

physico-chemical properties as summarized in Table 1. The molecular formula of 1 was determined to be C₂₅H₂₈O₉ by using FD-MS and elemental analysis. IR and UV spectra of 1 were consistent with the naphthaquinone chromophore. In particular, the UV spectrum of 1 was closely similar to that of anhydro-5-deoxyfusarubin¹⁾ (2) (Fig. 1) which was isolated as a red pigment from Nectria haematococca and that of umbrinomycin²) whose structure has not been identified yet. Comparison of the ¹³C NMR signals of 1 with those of acetate of 2 (3) (Table 2) revealed down field shifts for C-1 (δ 73.1 vs. δ 63.5) and C-8 (δ 140.6 vs. δ 118.3), and an upfield shift for C-7 (δ 144.7 vs. δ 160.0). These data indicated the structure of 1 was that of 1.7.8-tri-substituted 2.

¹H-¹H and ¹H-¹³C COSY experiments revealed the presence of two partial structures A and B in 1 (Fig. 3). The remaining four carbons in 1 were attributed to a singlet methyl (C-17, δ 29.8), an isolated methylene (C-15, δ 41.9), an acetal (C-18, δ 94.9) and a ketone (C-16, δ 205.1). The ¹H NMR spectra of the chromophore of 1 and 2 were very similar, but the singlet methylene proton (1-H, δ 5.24) in 2 was replaced by the double doublet methine proton (δ 5.65) in 1 which was coupled with methylene protons (11-H) in the partial structure A. Therefore, 1 was confirmed to possess a propyl group at C-1.

The connectivities of the chromophore and the partial structures were determined and confirmed by heteronuclear multiple-bond correlation $(HMBC)^{3}$ experiment as shown in Fig. 4. The HMBC experiment showed the long range couplings of 17-H (δ 2.18; singlet methyl) and 15-H (δ 4.05 and 4.11; isolated methylene) to C-16 (δ 205.1;

Fig. 4. Long range couplings observed by HMBC experiment.

→ Long range coupling.

 $- \rightarrow NOE.$

Fig. 5. Relative configuration of the 1,3-dioxan moiety.

ketone), indicating the presence of acetonyl side chain. In addition, since 15-H was also coupled to C-6 (δ 184.4), C-7 (δ 144.7) and C-8 (δ 140.6), this acetonyl side chain was proved to attach to C-7. The long range couplings of 18-H (δ 6.08; acetal) to C-20 (δ 82.1) and C-22 (δ 71.2) revealed the presence of the 4-hydroxymethyl-5-hydroxy-1,3dioxan moiety containing the partial structure B. Furthermore, the long range couplings of 18-H to C-7, C-8 and C-9 (δ 186.4) indicated that the 1,3-dioxan moiety was linking to C-8. On the basis of the above mentioned results, structure of 1 was determined as shown in Fig. 1.

The relative stereochemistry for the dioxan moiety was determined by coupling constants and NOE experiment as shown in Fig. 5. A large coupling constant between 20-H and 21-H (9.0 Hz) indicated that both of them were axially-oriented. 18-H was also proved to be the axial-orientation, because irradiation of 18-H enhanced the intensities of 20-H and $22-H_{ax}$ in the NOE study.

1 showed cytotoxicity against P388 leukemia cells $(IC_{50} \ 0.3 \ \mu g/ml)$ and weak antimicrobial activity against Gram-positive bacteria.

Kazutoshi Shindo Hiroyuki Kawai

Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Takasaki, Gunma 370-12, Japan

(Received December 11, 1991)

References

- PARISOT, D.; M. DEVYS & M. BARBIER: Structure and biosynthesis of 5-deoxyfusarubin and anhydro-5deoxyfusarubin, naphthaquinone pigments form *Nectria haematococca*. Phytochemistry 24: 1977~ 1979, 1985
- DONOVICK, R.; E. MEYERS, E. F. PANSY & L. F. WEISENBORN (Squibb): Umbrinomycin and diumycin. U.S. 3,496,268, Feb. 17, 1970
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986